
FairAD: Computationally Efficient Fair Graph Clustering via
Algebraic Distance

Minh Phu Vuong

Texas State University

San Marcos, TX, USA

cty13@txstate.edu

Young-Ju Lee

Texas State University

San Marcos, TX, USA

yjlee@txstate.edu

Iván Ojeda-Ruiz

Lamar University

Beaumont, TX, USA

iojedaruiz@lamar.edu

Chul-Ho Lee

Texas State University

San Marcos, TX, USA

chulho.lee@txstate.edu

Abstract
Due to the growing concern about unsavory behaviors of machine

learning models toward certain demographic groups, the notion of

‘fairness’ has recently drawn much attention from the community,

thereby motivating the study of fairness in graph clustering. Fair

graph clustering aims to partition the set of nodes in a graph into 𝑘

disjoint clusters such that the proportion of each protected group

within each cluster is consistent with the proportion of that group

in the entire dataset. It is, however, computationally challenging

to incorporate fairness constraints into existing graph clustering

algorithms, particularly for large graphs. To address this problem,

we propose FairAD, a computationally efficient fair graph clustering

method. It first constructs a new affinity matrix based on the notion

of algebraic distance such that fairness constraints are imposed. A

graph coarsening process is then performed on this affinity matrix

to find representative nodes that correspond to 𝑘 clusters. Finally, a

constrained minimization problem is solved to obtain the solution

of fair clustering. Experiment results on the modified stochastic

block model and six public datasets show that FairAD can achieve

fair clustering while being up to 40 times faster compared to state-

of-the-art fair graph clustering algorithms.

CCS Concepts
•Mathematics of computing→ Graph algorithms; • Theory
of computation→ Unsupervised learning and clustering; •
Information systems→ Clustering.

Keywords
Graph Clustering, Spectral Clustering, Fairness

ACM Reference Format:
Minh Phu Vuong, Young-Ju Lee, Iván Ojeda-Ruiz, and Chul-Ho Lee. 2025.

FairAD: Computationally Efficient Fair Graph Clustering via Algebraic Dis-

tance. In Proceedings of the 34th ACM International Conference on Information

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-2040-6/2025/11

https://doi.org/10.1145/3746252.3761320

and Knowledge Management (CIKM ’25), November 10–14, 2025, Seoul, Re-
public of Korea. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3746252.3761320

1 Introduction
Recent advancements in machine learning (ML) have enabled its in-

tegration into decision-critical applications across various domains,

including finance, healthcare, education, and law enforcement. De-

spite their significant capabilities, ML algorithms are susceptible to

biases present in datasets, resulting in potentially unfair outcomes

for certain demographic groups [14]. Thus, fairness criteria have

been introduced into ML problems, ranging from supervised and

unsupervised learning settings [4, 7, 10, 11, 13, 18, 30, 31, 34] to

semi-supervised and self-supervised settings [6, 39, 40], to eliminate

unwanted algorithmic bias and develop fair ML models.

Fairness refers to the unbiased treatment of individuals or groups

across various demographic categories, such as race, gender, age,

and socioeconomic status. In general, fairness can be incorporated

in an ML problem by introducing a fairness regularizer term to

its objective function; formulating an optimization problem with

explicit fairness constraints; or post-processing the output of a

model to account for the fairness. As a result, it leads to an unbi-

ased outcome in the target ML task or the representations that are

invariant to protected attributes or have feature distributions that

are statistically indistinguishable across demographic groups.

Fairness has been characterized by several concepts, including

individual fairness [17, 27], group fairness [12], and counterfactual

fairness [19]. Individual fairness requires similar individuals to re-

ceive similar outcomes, while counterfactual fairness demands that

an individual’s outcome remains unchanged if only their protected

attribute were hypothetically modified, with all the other features

being held constant. Group fairness ensures a fairly proportional

representation across demographic groups. Given the prevalence

of demographic groups in real-world datasets, ensuring group fair-

ness has become a critical requirement, especially when it comes

to clustering applications.

Chierichetti et al. [7] pioneered the integration of fairness into

𝑘-center and 𝑘-median clustering algorithms. They introduced the

concept of fairness by ensuring that the proportion of each de-

mographic group within each cluster is consistent with its overall

proportion in the dataset. Backurs et al. [4] extended their approach

to efficiently handle larger datasets with near-linear running time.

https://doi.org/10.1145/3746252.3761320
https://doi.org/10.1145/3746252.3761320
https://doi.org/10.1145/3746252.3761320

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Minh Phu Vuong, Young-Ju Lee, Iván Ojeda-Ruiz, and Chul-Ho Lee

More recently, several works have addressed fair 𝑘-clustering in

the presence of outliers [1, 2]. They first identify a subset of points

as outliers to remove and partition the remaining data so that each

cluster preserves the overall demographic proportions. These meth-

ods, however, have been predominantly applied to clustering tasks

in the Euclidean space, but clustering problems also often occur in

the context of graph data.

Graph clustering is a fundamental problem and has been ex-

tensively studied in the literature. Among others, spectral cluster-

ing [26] has been the most popular unsupervised graph-clustering

algorithm as it is developed in a principled way to find the optimal

solution to a well-defined graph cut problem. It has also been ac-

tively extended to variants of the graph cut problem for various

reasons, e.g., improving the quality of clustering with assistive in-

put from the user [8, 20, 32, 35, 37, 38]. For example, Xu et al. [35]

incorporate linear constraints to the objective of spectral clustering,

while Wang et al. [32] enforce prior knowledge via must-link and

cannot-link constraints. These constraint-driven methods are espe-

cially effective for image segmentation applications, where a small

set of annotated pixels helps the algorithm produce more accurate

segmentation boundaries.

Kleindessner et al. [18] introduced a mathematical framework

that imposes the notion of fairness as additional linear constraints

into the problem of spectral clustering. Their algorithm, which

we name as FairSC, however, faces scalability issues for larger

graphs due to its high computational cost. Wang et al. [30] recently

proposed a scalable fair spectral clustering algorithmnamed sFairSC

by reformulating the problem as a projected eigenvalue problem

and effectively improving its scalability. While their algorithms

improve the balance performance compared to the standard spectral

clustering, their frameworks still rely on solving constrained or

projected eigenvalue problems due to the fairness constraints. They

generally take much longer than solving unconstrained eigenvalue

problems as they require computing the nullspace of a fairness

matrix or employing the nullspace projection.

We propose FairAD, a computationally efficient fair graph clus-

tering method via Algebraic Distance. In FairAD, we first construct

a new affinity matrix based on the notion of algebraic distance

such that the fairness constraints are imposed. We then employ a

recursive graph coarsening process on the affinity matrix to find

representative nodes that correspond to a given number of clus-

ters. They eventually lead to a simple constrained minimization

problem, which can be solved efficiently. We further optimize the

implementation of FairAD through several techniques.

Our contributions can be summarized as follows:

• We introduce a novel framework to integrate fairness constraints

into the affinity matrix for graph clustering, when constructed

based on the algebraic distance.

• We demonstrate how graph coarsening can be effectively lever-

aged to convert the problem into a simpler minimization problem,

which can be solved efficiently.

• We develop a series of implementation optimizations to further

improve the efficiency of FairAD.

• We evaluate the effectiveness and efficiency of FairAD through

extensive experiments on the modified stochastic block model

and six real-world datasets. The results show that FairAD not

only delivers fair clustering but also runs up to 40× faster than

state-of-the-art fair graph clustering algorithms.

2 Preliminaries
Consider an undirected, weighted graph 𝐺 = (𝑉 , 𝐸), where 𝑉 =

{1, 2, . . . , 𝑛} is the set of nodes and 𝐸 is the set of edges. Each edge

between nodes 𝑖 and 𝑗 is associated with a positive weight𝑊𝑖, 𝑗 >0.

𝑊𝑖,𝑖 =0 for all 𝑖 , and𝑊𝑖, 𝑗 = 0 if nodes 𝑖 and 𝑗 are not neighbors. Let

W= (𝑊𝑖, 𝑗) be the 𝑛 × 𝑛 weight matrix, which is also called affinity

matrix. Let 𝑑𝑖 be the degree of node 𝑖 , which is defined as 𝑑𝑖 :=∑
𝑗∈𝑉 𝑊𝑖, 𝑗 , and let D := diag(𝑑1, 𝑑2, . . . , 𝑑𝑛) be the degree matrix.

For a subset of nodes 𝐴 ⊂𝑉 , we define vol(𝐴) := ∑
𝑖∈𝐴 𝑑𝑖 to be a

volume of 𝐴. Also, for two subsets 𝐴, 𝐵⊂𝑉 , we define𝑊 (𝐴, 𝐵) :=∑
𝑖∈𝐴,𝑗∈𝐵𝑊𝑖, 𝑗 . The Laplacian and normalized Laplacian matrices

of 𝐺 are defined as L := D −W and L := D−1/2 (D −W)D−1/2,
respectively.

Notations. For an integer 𝑛 ≥ 1, let [𝑛] := {1, 2, . . . , 𝑛}. Let 1 and

0 denote the 𝑛-dimensional all-one and all-zero column vectors,

respectively. Let I𝑘 be the 𝑘 × 𝑘 identity matrix. For a node subset

𝐴⊂𝑉 , let 𝐴 denote its complement 𝑉 \𝐴.

2.1 Spectral Clustering
The basic problem of graph clustering is the minimum cut problem,

which is to partition 𝑉 into 𝑘 disjoint subsets (clusters), i.e., 𝑉 =

𝐶1 ∪𝐶2 ∪ · · · ∪𝐶𝑘 , such that the sum of the weights of the edges

across different clusters is minimized. That is, it is to find 𝑘 disjoint

subsets to minimize

Cut(𝐶1,𝐶2, . . . ,𝐶𝑘) :=
1

2

𝑘∑︁
𝑙=1

𝑊 (𝐶𝑙 ,𝐶𝑙).

While this problem can be solved easily, it is widely known that

its solution does not lead to satisfactory partitions, and it often

separates an individual node from the rest of the graph. Thus, its

properly normalized versions have been introduced and extensively

studied in the literature [20, 28]. Among others, the normalized cut

(NCut) problem is the most popular problem, and its corresponding

‘spectral clustering’ algorithm is widely used as an effective graph

clustering algorithm [26].

Specifically, the NCut problem is to minimize

NCut(𝐶1,𝐶2, . . . ,𝐶𝑘) :=
1

2

𝑘∑︁
𝑙=1

𝑊 (𝐶𝑙 ,𝐶𝑙)
vol(𝐶𝑙)

. (1)

Consider 𝑘 = 2. Letting 𝒉 be an indicator vector with entries ℎ𝑖 = 1

if 𝑖 ∈ 𝐶1 and ℎ𝑖 = −1 otherwise, the NCut problem in (1) becomes

minℎ𝑖 ∈{1,−1} NCut(𝒉), which can also be written as

min

𝑢𝑖 ∈{𝜎,−1/𝜎 }
𝒖⊤L𝒖

subject to 𝒖⊤D𝒖 = vol(𝑉) and 𝒖⊤D1 = 0,
(2)

where𝜎 is some positive constant. Since this problem is NP-hard [29],

by relaxing 𝒖 to take arbitrary real values and substituting 𝒗 :=

D1/2𝒖, we have the following relaxed problem:

min

𝒗∈R𝑛
𝒗⊤L𝒗

subject to ∥𝒗∥2 = vol(𝑉) and 𝒗⊤D1/21 = 0.

(3)

FairAD: Computationally Efficient Fair Graph Clustering via Algebraic Distance CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

This boils down to finding the eigenvector corresponding to

the smallest non-zero eigenvalue of the normalized Laplacian L
and evaluating the “sign" of each component of the eigenvector to

partition the graph into two clusters.

For 𝑘 > 2, by repeating the similar arguments as above, we

can relax the 𝑘-way NCut problem as the following standard trace

minimization problem, which is to find the 𝑛 × 𝑘 partition matrix

V = [𝒗1, 𝒗2, . . . , 𝒗𝑘] to minimize the trace:

min

V∈R𝑛×𝑘
Tr(V⊤LV) subject to V⊤V = I𝑘 , (4)

where Tr(V⊤LV) = ∑𝑘
𝑖=1 𝒗

⊤
𝑖

L𝒗𝑖 . It is also known that the solution

to the relaxed 𝑘-way NCut problem in (4) is to find the eigenvectors

that correspond to the 𝑘 smallest eigenvalues of L [26].

2.2 Fairness Constraints
The notion of fairness can now be introduced in the context of

graph clustering. The goal of fair graph clustering is to ensure that

the proportion of nodes in each cluster is identical to the proportion

of the population as a whole. Specifically, suppose that nodes are

originally divided into ℎ distinct groups, i.e.,𝑉 = 𝑉1 ∪𝑉2 ∪ · · · ∪𝑉ℎ .
Then, it aims to ensure that, for 𝑠 = 1, 2, . . . , ℎ and 𝑙 = 1, 2, . . . , 𝑘 ,

|𝑉𝑠 ∩𝐶𝑙 |
|𝐶𝑙 |

=
|𝑉𝑠 |
|𝑉 | . (5)

Let 𝒇 (𝑠) := [𝑓 (𝑠)
1

, 𝑓
(𝑠)
2

, . . . , 𝑓
(𝑠)
𝑛] be the group indicator vector

for𝑉𝑠 , which has elements 𝑓
(𝑠)
𝑖

= 1 if 𝑖 ∈ 𝑉𝑠 and 𝑓
(𝑠)
𝑖

= 0 otherwise.

Also, let F = (𝐹𝑖,𝑠) be an𝑛×(ℎ−1)matrix with elements 𝐹𝑖,𝑠 := 𝑓
(𝑠)
𝑖
−

|𝑉𝑠 |/|𝑉 | for 𝑠 ∈ [ℎ − 1] and 𝑖 ∈ [𝑛]. Then, as shown in [18, 30], a

partition𝑉 = 𝐶1∪𝐶2∪· · ·∪𝐶𝑘 is fair if and only if its corresponding
𝑛 × 𝑘 partition matrix V = [𝒗1, 𝒗2, . . . , 𝒗𝑘] satisfies

F⊤V = 0(ℎ−1)×𝑘 , (6)

where 0(ℎ−1)×𝑘 is the all-zero matrix of dimension (ℎ − 1) × 𝑘 . In
other words, the fairness constraints in (5) are equivalent to the

linear constraints in (6). Therefore, the problem of fair spectral
clustering now becomes

min

V⊤V=I𝑘 , F⊤V=0(ℎ−1)×𝑘
Tr(V⊤LV), (7)

which is imposing the linear constraints in (6) into the problem of

spectral clustering in (4).

To solve this problem efficiently, novel fair spectral clustering

algorithms, i.e. FairSC and sFairSC, have been developed [18, 30].

While they improve the balance performance compared to spectral

clustering, their frameworks still rely on solving constrained or

projected eigenvalue problems due to the fairness constraints. They

generally take much longer than solving unconstrained eigenvalue

problems as they require computing the nullspace of F or employ-

ing the nullspace projection. As shall be demonstrated through the

experiments, their computational time grows quickly with increas-

ing size of the graph. Therefore, there is a need for an efficient and

scalable approach for fair graph clustering.

3 Proposed Method: FairAD
In this section, we introduce FairAD, a computationally efficient fair

graph clustering method. We first construct a new affinity matrix

based on the notion of algebraic distance, where the fairness con-

straints are imposed. We then perform a recursive graph coarsening

process on this affinity matrix to find representative (or anchor)

nodes that correspond to 𝑘 clusters. We finally determine which

cluster each node in the original graph belongs to by solving a re-

laxed 𝑘-way graph cut problem where the representative nodes are

used as additional linear constraints. In addition to the operations of

FairAD, we also explain a set of implementation optimizations made

to speed up FairAD in practice. Figure 1 illustrates an overview of

FairAD.

3.1 Imposing Fairness Constraints
For a given graph with the affinity (weight) matrix W, as the first

step of FairAD, we construct a new affinity matrix such that the

fairness constraints are imposed. To this end, we propose to use

the algebraic distance, which was originally developed in [22] to

measure the strength of a connection between each node pair in the

graph and to construct a new affinity matrix to achieve better solu-

tions to partitioning problems, albeit not under fairness constraints.

We below explain how the process of computing the algebraic dis-

tance can be modified to impose the fairness constraints into a new

affinity matrix.

We beginwith the definition of algebraic distance. Let 𝒙1, 𝒙2, . . . , 𝒙𝑅
be the 𝑛-dimensional test vectors. Each test vector 𝒙𝑟 is obtained
by running 𝜏 Jacobi relaxation iterations [24] on L𝒙𝑟 = 0, where
L = D −W is the (unnormalized) Laplacian matrix. Starting from a

random vector 𝒙0𝑟 , each Jacobi relaxation iteration on L𝒙𝑟 = 0 leads

to

𝒙𝑡𝑟 = 𝒙𝑡−1𝑟 + D−1 (0 − L𝒙𝑡−1𝑟) = D−1W𝒙𝑡−1𝑟 , 𝑡 = 1, 2, . . . , 𝜏 − 1,
and we finally have a test vector 𝒙𝑟 at 𝑡 = 𝜏 . Intuitively, in each

iteration, the value of each node is updated based on the weighted

average of the values of its neighbors. This iterative process ef-

fectively smooths out the values of the nodes that are strongly

connected, while preserving the differences across the values of

the weakly connected nodes. Then, the algebraic distance between

nodes 𝑖 and 𝑗 is defined as

𝑠 (𝑖, 𝑗) = max

𝑟=1,2,...,𝑅
|𝑥𝑟,𝑖 − 𝑥𝑟,𝑗 |, (8)

where 𝑥𝑟,𝑖 is the 𝑖-th element of test vector 𝒙𝑟 . Next, a new affinity

matrix, say, W
alg

:= (𝑊 alg

𝑖, 𝑗
), is constructed based on the algebraic

distance in (8) as follows [22]: For all 𝑖, 𝑗 ,

𝑊
alg

𝑖, 𝑗
= exp(−𝑠 (𝑖, 𝑗)) . (9)

We here aim to incorporate the fairness constraints in (6) into

the process of computing the algebraic distance in (8). Specifically,

our approach is to impose the fairness constraints in (6) at each
Jacobi relaxation iteration so that its resulting test vector, say 𝒙𝑡𝑟 ,
at iteration 𝑡 satisfies the fairness constraints, i.e., F⊤𝒙𝑡𝑟 = 0. For
brevity, we drop the subscript 𝑟 as the test vectors are obtained in

the same way.

First, observe that the vector 𝒙𝑡 at the 𝑡-th Jacobi relaxation

iteration is given by

𝒙𝑡 = D−1W𝒙𝑡−1,

which leads to

D𝒙𝑡 = W𝒙𝑡−1 . (10)

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Minh Phu Vuong, Young-Ju Lee, Iván Ojeda-Ruiz, and Chul-Ho Lee

Solving a constrained
minimization problem

Imposing fairness
constraints

Input weight
matrix

1 2 Graph coarsening3 4

Figure 1: An overview of FairAD.

Algorithm 1: Constrained Jacobi (cJacobi)

Input :W, D, F
Output :𝒙𝜏 .

1 Initialize 𝒙0.

2 for 𝑡 = 1 to 𝜏 do
3 𝒙𝑡 := (D + 𝜇FF⊤)−1W𝒙𝑡−1.
4 end for

We then incorporate the fairness constraints F⊤𝒙𝑡 = 0 into (10),

which leads to

D𝒙𝑡 = W𝒙𝑡−1 subject to F⊤𝒙𝑡 = 0. (11)

Let 𝒃 := W𝒙𝑡−1. Since we solve this system for each 𝑡 , for ease of

exposition, we also drop the superscript 𝑡 . Next, we observe that the

system in (11) is equivalent to the following quadratic optimization

problem:

min

F⊤𝒙=0

1

2

𝒙⊤D𝒙 − 𝒃⊤𝒙 . (12)

We write its Lagrangian function, which is given by

L(𝒙, 𝜆) = 1

2

𝒙⊤D𝒙 − 𝒃⊤𝒙 + 𝜆F⊤𝒙,

where 𝜆 is the Lagrange multiplier. The KKT conditions applied to

this Lagrangian function yield(
D F
F⊤ 0

) (
𝒙
𝜆

)
=

(
𝒃
0

)
, (13)

which is a system of linear equations.

We leverage the augmented Lagrangian Uzawa method [15] to

solve the indefinite system in (13) as it has a fast rate of conver-

gence, implying that just one iteration provides a good approximate

solution. Specifically, given (𝒙ℓ , 𝜆ℓ), a new iterate (𝒙ℓ+1, 𝜆ℓ+1) is
obtained by solving the following equations:

(D + 𝜇FF⊤)𝒙ℓ+1 = 𝒃 − F𝜆ℓ ,

𝜆ℓ+1 = 𝜆0 + 𝜇F⊤𝒙ℓ ,

where 𝜇 is a penalty parameter. It is known that if 𝜇 is sufficiently

large, the iterates converge exponentially fast to the solution of (13).

More formally, the following result is known for the convergence

of the Uzawa method from [15, 21]:

Lemma 1. Let (𝑥0, 𝜆0) be a given initial guess, and for ℓ ≥ 1 let
(𝑥 ℓ , 𝜆ℓ) be the iterates produced by the augmented Lagrangian Uzawa
method. Denote by 𝛾0 the smallest eigenvalue of F⊤D−1F. Then the
following holds:

∥𝜆 − 𝜆ℓ ∥ ≤
(

1

1 + 𝛾0𝜇

)ℓ
∥𝜆 − 𝜆0∥,

∥𝑥 − 𝑥 ℓ ∥ ≤
√︁
1/𝜇 ∥𝜆 − 𝜆ℓ−1∥ ≤

√︁
1/𝜇

(
1

1 + 𝛾0𝜇

)ℓ
∥𝜆 − 𝜆0∥.

Lemma 1 implies that the Uzawa method converges exponen-

tially fast for a sufficiently large value of 𝜇. Since the factor
√︁
1/𝜇 (1+

𝛾0𝜇)−1 decreases monotonically with 𝜇, even a single iteration with

𝜇 ≫ 1 can yield a good approximate solution. In other words, by

applying the Uzawa method to (13), for a given (𝒙0, 𝜆0), we can
obtain (𝒙1, 𝜆1) in the first iteration as follows:

(D + 𝜇FF⊤)𝒙1 = 𝒃 − F𝜆0,

𝜆1 = 𝜆0 + 𝜇F⊤𝒙1,

Setting 𝜆0 = 0 yields

(D + 𝜇FF⊤)𝒙1 = 𝒃 . (14)

By Lemma 1, we can safely use 𝒙1 in (14) as an approximate solution

to (13). That is, we have the following solution to (13):

𝒙 ≈ (D + 𝜇FF⊤)−1𝒃 . (15)

Thus, by noting that we have dropped the superscript 𝑡 , and since

𝒃 = W𝒙𝑡−1, the test vector 𝒙𝑡 at iteration 𝑡 is now obtained by

𝒙𝑡 = (D + 𝜇FF⊤)−1W𝒙𝑡−1 . (16)

The process of imposing the fairness constraints into every Jacobi

relaxation iteration to obtain each test vector 𝒙𝑟 is summarized

in Algorithm 1. Once we obtain 𝑅 test vectors, we compute the

algebraic distance 𝑠 (𝑖, 𝑗) for each pair of nodes 𝑖 and 𝑗 as in (8) and

construct a new affinity matrix W
alg

as in (9).

3.2 Fair Graph Clustering via Algebraic
Distance

From the new affinity matrix W
alg

, which now reflects the fairness

constraints, the next step of FairAD is to partition the nodes 𝑉 into

𝑘 clusters. To this end, we leverage ‘graph coarsening’ to coarsen

the (updated) graph with W
alg

in order to identify a small number

of representative corresponding to 𝑘 clusters. They are then used

as anchor nodes to guide the final clustering process. Specifically,

we finally solve a constrained minimization problem, which is a

relaxed 𝑘-way graph cut problem with having the representative

nodes as additional linear constraints.

Graph coarsening. For graph coarsening, we use a coarsening

algorithm introduced in [25]. It is a recursive algorithm, which

starts from the finest level and moves towards increasingly coarser

levels. Let𝐺 (ℓ) = (𝑉 (ℓ) , 𝐸 (ℓ)) be the coarse graph at level ℓ , and let

Wℓ = (𝑊 (ℓ)𝑖, 𝑗
) be its corresponding affinity (weight) matrix, where

ℓ = 0, 1, . . . , 𝜅. We set 𝐺0
:= 𝐺 and W0

:= W
alg

. That is, the finest

graph is the graph𝐺 with W
alg

. Also,𝐺 (𝜅) and W𝜅 are the coarsest

graph and its affinity matrix, respectively. We below explain how

𝐺 (ℓ) and Wℓ are updated at each level ℓ .

FairAD: Computationally Efficient Fair Graph Clustering via Algebraic Distance CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Algorithm 2: Coarsening
Input :W

alg
, # of coarse levels 𝜅

Output :Coarse graphs {𝐺ℓ }𝜅ℓ=1 with {Wℓ }𝜅ℓ=1
1 W0

:= W
alg

, 𝑉 (0) := 𝑉 .

2 for each coarse level ℓ = 1, 2, . . . , 𝜅 do
3 𝜂 := |𝑉 (ℓ−1) |.
4 𝑉 (ℓ) := {𝑛1}.
5 for 𝑖 = 2, 3, . . . , 𝜂 do

6 if max𝑗∈𝑉 (ℓ)𝑊
(ℓ−1)
𝑛𝑖 , 𝑗

≤ 𝛼
∑

𝑗 ′∈𝑉 (ℓ−1)𝑊
(ℓ−1)
𝑛𝑖 , 𝑗

′ then
7 𝑉 (ℓ) := 𝑉 (ℓ) ∪ {𝑛𝑖 }.
8 end if
9 end for

10 Compute Pℓ by (18).

11 Wℓ := P⊤
ℓ

Wℓ−1Pℓ .
12 end for

The coarsening algorithm begins by initializing 𝑉 (ℓ) as a sin-
gleton set containing only the first node, say, 𝑛1 ∈ 𝑉 (ℓ−1) . That is,
𝑉 (ℓ) := {𝑛1}. We then repeatedly check if the next node𝑛𝑖 ∈ 𝑉 (ℓ−1)
is ‘weakly’ connected to the ones that have been added in 𝑉 (ℓ) by
evaluating the following inequality:

max

𝑗∈𝑉 (ℓ)
𝑊
(ℓ−1)
𝑛𝑖 , 𝑗

≤ 𝛼
∑︁

𝑗 ′∈𝑉 (ℓ−1)
𝑊
(ℓ−1)
𝑛𝑖 , 𝑗

′ , (17)

where 𝛼 is the coarsening parameter. The value of 𝛼 is generally

chosen to be much smaller than one, i.e., 𝛼 ≪ 1, and our choice

of the value shall be explained later in the experiments. If the

inequality holds, it implies that node 𝑛𝑖 does not have a strong

connection with any of the previously added nodes in 𝑉 (ℓ) . As a
result, node 𝑛𝑖 is treated as a ‘sufficiently independent’ node and

added to 𝑉 (ℓ) , i.e., 𝑉 (ℓ) := 𝑉 (ℓ) ∪ {𝑛𝑖 }. Otherwise, 𝑉 (ℓ) remains

unchanged. This coarsening process is repeated until all the nodes

𝑉 (ℓ−1) are evaluated. Note that the intuition behind this process is

to eliminate mutually strongly connected nodes at each level.

Once the coarsening process is complete at level ℓ , we construct

a |𝑉 (ℓ−1) | × |𝑉 (ℓ) | interpolation matrix Pℓ := (𝑃 ℓ𝑖, 𝑗), with elements

𝑃 ℓ
𝑖, 𝑗

given by

𝑃 ℓ𝑖, 𝑗 :=


𝑊
(ℓ−1)
𝑖,𝑗∑

𝑗 ′ ∈𝑉 (ℓ) 𝑊
(ℓ−1)
𝑖,𝑗 ′

, for 𝑖 ∈ 𝑉 (ℓ−1) , 𝑗 ∈ 𝑉 (ℓ) ,

1, for 𝑖 ∈ 𝑉 (ℓ) , 𝑖 = 𝑗,

0, otherwise.

(18)

This interpolation matrix is then used to obtain the affinity matrix

Wℓ at level ℓ as follows:

Wℓ = P𝑇ℓ Wℓ−1Pℓ .

The entire graph coarsening process is repeated recursively, level

by level. It is summarized in Algorithm 2.

Constrainedminimization.The primary objective of graph coars-

ening is to identify 𝑘 representative nodes corresponding to 𝑘 dis-

tinct clusters. Intuitively, they are most weakly connected to each

other, so they could serve as anchor nodes (i.e., each node represents

each separate cluster) for the final clustering process. However, a

drawback of the graph coarsening algorithm is that we cannot

Algorithm 3: FairAD
Input :W, D, F,𝑚
Output :𝒗1, 𝒗2, . . . , 𝒗𝑘

1 for 𝑟 = 1 to 𝑅 do
2 𝒙𝑟 ← cJacobi(W,D, F).
3 end for
4 Compute W

alg
using (9) with {𝒙𝑟 }𝑅𝑟=1.

5 {𝐺ℓ }𝜅ℓ=0 ← Coarsening(W
alg
).

6 for each coarse level ℓ = 𝜅, 𝜅 − 1, . . . , 0 do
7 if |𝑉 (ℓ) | ≥ 𝑚 then
8 B, c← SpectralClustering(𝐺ℓ , 𝑘).
9 break;

10 end if
11 end for
12 L

alg
:= D−1/2

alg
(D

alg
−W

alg
)D−1/2

alg
.

13 A
alg

:= L
alg
+ 𝜇B⊤B.

14 for each cluster 𝑖 = 1, 2, . . . , 𝑘 do
15 𝒗𝑖 := 𝜇A−1

alg
B⊤c𝑖 .

16 end for

control the exact number of nodes generated at the coarsest level

(ℓ = 𝜅). Thus, we instead identify at least 𝑚 > 𝑘 representative

nodes that correspond to 𝑘 clusters, where multiple nodes can cor-

respond to the same cluster. Once we obtain coarse graphs {𝐺ℓ }𝜅ℓ=1
from the coarsening algorithm, we find the smallest coarse graph

containing at least𝑚 nodes. Note that for a given value of 𝑘 , we set

the value of𝑚 to be a bit greater than the value of 𝑘 . For example,

we use the value of𝑚 between 15 and 50 for 𝑘 < 10.

Specifically, we move towards the finest graph, starting from the

coarsest one, and find the first coarse graph containing at least𝑚

nodes (Lines 6-7 of Algorithm 3). We then apply spectral clustering

to this coarse graph to obtain 𝑘 groups of representative nodes

(Line 8 of Algorithm 3). In other words, we first compute the first

𝑘 eigenvectors of the𝑚 ×𝑚 normalized Laplacian matrix of the

coarse graph, which form a𝑚 × 𝑘 matrix, and then run 𝑘-means

on its rows to produce 𝑘 groups of representative nodes. Note that

since the coarse graph (with𝑚 nodes) is significantly smaller than

the original graph (with 𝑛 nodes), it is not a computational burden

to use the spectral clustering at this stage.

Let𝑚∗ be the number of identified representative nodes. Our next

step is to find the clustering solution such that𝑚∗ representative
nodes belong to their corresponding clusters. In other words, we

impose the representative nodes with their corresponding groups

as linear constraints to a relaxed graph cut problem. This problem

is given by, for 𝑖 = 1, 2, . . . , 𝑘 ,

min

B𝒗𝑖=c𝑖

1

2

𝒗⊤𝑖 L
alg

𝒗𝑖 , (19)

where L
alg

is the normalized Laplacian corresponding toW
alg

. From

𝑚∗ representative nodes, say, 𝑟1, 𝑟2, . . . , 𝑟𝑚∗ , we define B and c𝑖 to
be

B =

©­­­­«
e⊤𝑟1
e⊤𝑟2
.
.
.

e⊤𝑟𝑚∗

ª®®®®¬
and c𝑖 =

©­­­­«
𝛿𝑟1,𝑖
𝛿𝑟2,𝑖
.
.
.

𝛿𝑟𝑚∗ ,𝑖

ª®®®®¬
, (20)

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Minh Phu Vuong, Young-Ju Lee, Iván Ojeda-Ruiz, and Chul-Ho Lee

NBA German LastFM Recidivism Deezer Credit
10−1

100

101

102

103

Ru
nt

im
e

(s
)

[l
og

]

w/o CuPy
w/ CuPy

Figure 2: Running time of FairAD with and without CuPy.

NBA German LastFM Recidivism Deezer Credit
10−1

100

101

102

Ru
nt

im
e

(s
)

[l
og

]

O
O

M

O
O

M

O
O

M

Direct solver
PyAMG

Figure 3: Running time of FairAD with and without PyAMG.

respectively, where e𝑖 is an 𝑛-dimensional vector with the 𝑖-th entry

being one and the others being zero, and 𝛿𝑟,𝑖 = 1 if node 𝑟 belongs to

cluster 𝑖 and 0 otherwise. That is, each row of B is a one-hot vector

that represents the location of its corresponding representative

node, and c𝑖 is a vector to indicate which representative nodes

belong to cluster 𝑖 .

We can employ the same technique as used in solving (12) to

solve (19). First, we write its equivalent indefinite system as(
L
alg

B⊤

B 0

) (
𝒗𝑖
𝜆

)
=

(
0
c𝑖

)
. (21)

Then, as was done in Section 3.1, we leverage the Uzawa method

to solve the system in (21). For a given (𝒗0
𝑖
, 𝜆0), we have (𝒗1

𝑖
, 𝜆1) in

the first iteration as follows:

(L
alg
+ 𝜇B⊤B)𝒗1𝑖 + B𝜆0 = 𝜇B⊤c𝑖

𝜆1 = 𝜆0 + 𝜇 (B𝒗1𝑖 − c𝑖) .

Setting 𝜆0 = 0 yields

(L
alg
+ 𝜇B⊤B)𝒗1𝑖 = 𝜇B⊤c𝑖 .

By Lemma 1, we obtain the following approximate solution to (21):

𝒗𝑖 ≈ 𝜇A−1
alg

B⊤c𝑖 , (22)

where A
alg

:= L
alg
+ 𝜇B⊤B. Finally, once we have the solutions

𝒗1, 𝒗2, . . . , 𝒗𝑘 , the cluster label of node 𝑗 is determined by identifying

which 𝒗𝑖 has the maximum value in its 𝑗-th entry, i.e., argmax𝑖 𝑣𝑖, 𝑗
for 𝑗 ∈ [𝑛].

3.3 Optimized Implementation
We here explain a set of implementation optimizations used for

the implementation of FairAD, which is summarized in Algorithm

3. First, recall that obtaining the test vectors 𝒙1, 𝒙2, . . . , 𝒙𝑅 to con-

struct a new affinity matrix W
alg

requires computing (16) itera-

tively (or running Algorithm 1), which involves inverting the ma-

trix (D + 𝜇FF⊤). To efficiently compute (D + 𝜇FF⊤)−1, we employ

the Woodbury matrix identity [33]. For given matrices A,C,U, and
V with the shapes 𝑛 × 𝑛, 𝑘 × 𝑘, 𝑛 × 𝑘 and 𝑘 × 𝑛, respectively, the
Woodbury matrix identity to compute (A + UCV)−1 is given by

(A + UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1 .

Using this identity, we can efficiently compute (D + 𝜇FF⊤)−1 as
follows:

(D + 𝜇FF⊤)−1 = D−1 − D−1F(I−1𝜇 + F⊤D−1F)−1F⊤D−1,

where I𝜇 := 𝜇I. Here, since D is a diagonal matrix, it is straight-

forward to compute D−1. In addition, F is a tall matrix, meaning

that the inversion (I−1𝜇 +F⊤D−1F)−1 is also easier to compute. This

is because it only involves inverting a 𝑘 × 𝑘 matrix, where 𝑘 is

typically much smaller than 𝑛. That is, the inversion costs O(𝑘3)
instead of O(𝑛3).

Second, we optimize the implementation of FairAD by leverag-

ing CuPy, which is an open source library for GPU-accelerated

computing with Python.
1
In particular, the matrix operations are

done much more efficiently since CuPy allows us to fully exploit

GPU parallel processing. As a result, the computational efficiency

of FairAD can be greatly enhanced. In Figure 2, we compare the

running times of our GPU-accelerated implementation of FairAD

with CuPy and its CPU-based counterpart. The GPU-accelerated

implementation achieves at least an order-of-magnitude speed-up

on five of the six datasets. Specifically, we observe a nearly two

orders-of-magnitude improvement on NBA and LastFM graphs and

roughly an order-of-magnitude improvement on the larger graphs

such as Recidivism, Deezer, and Credit.

Third, we optimize the efficiency of the graph coarsening algo-

rithm, which is an integral part of FairAD, by judiciously choosing

the order of nodes in 𝑉 (ℓ−1) to be evaluated, as in Line 5 of Al-

gorithm 2. Instead of simply evaluating the nodes in increasing

order of their node IDs, we prioritize the nodes that are strongly

connected with others. To this end, we maintain a set of ‘volumes’,

denoted by 𝝂 . It is initially 𝝂 := 1 and updated by 𝝂 := 𝝂Pℓ . The
nodes in 𝑉 (ℓ−1) are then evaluated in descending order of their

volumes. This way, we can first evaluate more important nodes

from a network connectivity perspective at each level.

Finally, to identify the cluster membership of each node in the

end, i.e., which cluster each node belongs to, we need to compute the

solution 𝒗𝑖 as in (22), which is equivalent to solving the following

linear system: For 𝑖 = 1, 2, . . . , 𝑘,

A
alg

𝒗𝑖 = 𝜇B⊤c𝑖 .

Note that unlike computing (D + 𝜇FF⊤)−1, it is impractical to di-

rectly compute A−1
alg

, since A
alg

does not possess the nice property

of (D+ 𝜇FF⊤) that allows us to leverage the Woodbury matrix iden-

tity. One could solve the linear system using the standard solvers

from NumPy or SciPy’s linear algebra packages, but they become

inefficient for large graphs. Thus, we utilize PyAMG’s classical

AMG solver [5], which is well-suited for large, sparse systems.
2
In

Figure 3, we compare the running times of the implementation of

FairAD when using the PyAMG solver and a direct SciPy solver.

For the small graphs such as NBA and LastFM, the implementa-

tion of FairAD with PyAMG outperforms the one with the direct

solver by up to an order of magnitude. For the larger graphs such as

Recidivism, Deezer, and Credit, the implementation with PyAMG

completes in roughly 150 seconds, while the one with the direct

solver fails with out-of-memory errors (“OOM”). Thus, we can see

1
https://docs.cupy.dev/en/v13.2.0/index.html

2
https://pyamg.readthedocs.io/en/latest/

https://docs.cupy.dev/en/v13.2.0/index.html
https://pyamg.readthedocs.io/en/latest/

FairAD: Computationally Efficient Fair Graph Clustering via Algebraic Distance CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Table 1: Statistics of datasets used in the experiments

Dataset |V| |E| Sensitive Attribute h
NBA 403 10,621 Country 2

German 1,000 21,742 Gender 2

LastFM 7,624 27,806 Country 4

Recidivism 18,876 311,870 Race 2

Deezer 28,281 92,752 Gender 2

Credit 29,460 136,196 Education 3

that the implementation of FairAD based on the PyAMG solver is

more computationally efficient and scalable to large graphs.

4 Experiments

In this section, we provide extensive experiment results to demon-

strate the superior performance of FairAD to baseline algorithms,

which are state-of-the-art fair clustering algorithms such as FairSC

and sFairSC as well as the plain spectral clustering (SC).

Datasets.We consider both synthetic and public real-world datasets

for performance evaluation. The synthetic dataset is generated

based on a modified stochastic block model (mSBM) [18], which

has been widely used to generate synthetic networks for clustering

and community detection. Suppose that the set of nodes 𝑉 consists

of ℎ groups, i.e.,𝑉 = 𝑉1 ∪𝑉2 ∪ · · · ∪𝑉ℎ , and is also partitioned into

𝑘 ground-truth clusters, i.e., 𝑉 = 𝐶1 ∪𝐶2 ∪ · · · ∪𝐶𝑘 . The synthetic
dataset is generated such that the ‘fairness’ condition is satisfied,

meaning that the almost same proportion of nodes from each group

𝑉𝑠 appears in each cluster𝐶𝑙 . In other words, we ensure the propor-

tion 𝜂𝑠 := |𝑉𝑠 ∩𝐶𝑙 |/|𝐶𝑙 | to be more or less the same for all 𝑠 ∈ [ℎ],
i.e., 𝜂1 ≈ 𝜂2 ≈ . . . ≈ 𝜂ℎ , for each 𝑙 ∈ [𝑘].

For mSBM, the probability of having an edge between two nodes

depends on their membership in the groups and clusters. Thus, we

define the probability of having an edge between nodes 𝑖 and 𝑗 , say,

𝑄𝑖, 𝑗 , to be given by

𝑄𝑖, 𝑗 :=


𝑎, if 𝑖 and 𝑗 are in the same group and the same cluster,

𝑏, if 𝑖 and 𝑗 are in the same group and different clusters,

𝑐, if 𝑖 and 𝑗 are in different groups and the same cluster,

𝑑, if 𝑖 and 𝑗 are in different groups and different clusters,

with 𝑎 > 𝑏 > 𝑐 > 𝑑 , which is to reflect stronger connections within

groups and clusters [18, 30]. Then, the affinity matrix of mSBM is

obtained by

𝑊𝑖, 𝑗 =

{
Bernoulli(𝑄𝑖, 𝑗), if 𝑖 ≠ 𝑗

0, otherwise,

where Bernoulli(𝑄𝑖, 𝑗) is a Bernoulli random variable with proba-

bility 𝑄𝑖, 𝑗 .

In addition, we consider six real-world datasets, namely, NBA

[9], German [3], Recidivism [16], LastFM [23], Deezer [23], and

Credit [36], which are all from social networks and contain sensitive

attributes. The statistics of the datasets are provided in Table 1. We

use the largest connected component of each graph.

Parameter settings. In our experiments, we set the parameters

of mSBM as follows: 𝑎 = 10(log𝑛/𝑛)2/3, 𝑏 = 7(log𝑛/𝑛)2/3, 𝑐 =

4(log𝑛/𝑛)2/3, and 𝑑 = (log𝑛/𝑛)2/3. For FairAD, we set 𝜇 = 10
9
and

𝛼 = 10
−4
. Both the number of test vectors, 𝑅, and the number of

Jacobi iterations, 𝜏 , are set to 10. We observed that the test vectors

𝒙1, 𝒙2, . . . , 𝒙𝑅 often become indistinguishable due to floating point

precision limitations. To address this issue, we introduce a scaling

parameter 𝛽 to the definition of𝑊
alg

𝑖, 𝑗
in (9), which is now given

by𝑊
alg

𝑖, 𝑗
= exp(−𝛽𝑠 (𝑖, 𝑗)), where the value of 𝛽 is chosen to be

sufficiently large. This way, we ensure that the difference between

the scaled algebraic distances of different node pairs becomes much

bigger, thereby leading to informative test vectors. Specifically, we

set 𝛽 = 𝑛/log(𝑛) in the experiments.

4.1 Experiment Setup
Evaluation metrics.We use the error rate introduced in [18] to

quantify the performance of FairAD and baselines on the synthetic

networks generated bymSBM. LetV = (𝑉𝑖, 𝑗) be the indicator matrix

of the predicted clustering labels, where 𝑉𝑖, 𝑗 = 1, if node 𝑖 belongs

to cluster 𝑗 , and 0 otherwise. Similarly, let V∗ be the indicator matrix

for the ground-truth labels generated by the mSBM. Note that the

numeric labels 1, 2, . . . , 𝑘 are arbitrary, so the same partitions may

differ by a permutation of columns. In other words, there exists a

permutationmatrixU such thatVU = V∗. To account for this nature,
letting Π𝑘 be the set of all 𝑘 × 𝑘 permutation matrices, the error

rate is defined as the smallest difference between the permuted

prediction VU and the ground truth V∗, which is given by

𝐸 (V − V∗) = 1

𝑘
min

U∈Π𝑘

∥VU − V∗∥. (23)

For real-world datasets, we use the average balance introduced

in [7] as the performance metric. Specifically, for a given group

partition 𝑉 = 𝑉1 ∪ · · · ∪ 𝑉ℎ , having a partition of clusters 𝑉 =

𝐶1 ∪ · · · ∪𝐶𝑘 , we define the balance of cluster 𝐶𝑙 as follows: For
𝑙 = 1, 2, . . . , 𝑘 ,

balance(𝐶𝑙) = min

𝑠,𝑠′∈[ℎ],𝑠≠𝑠′
|𝑉𝑠 ∩𝐶𝑙 |
|𝑉𝑠′ ∩𝐶𝑙 |

, (24)

where |𝑉𝑠 ∩ 𝐶𝑙 | is the number of the members of group 𝑉𝑠 that

also appear in cluster 𝐶𝑙 . This metric measures the degree of the

discrepancy in the proportional representation of each group 𝑉𝑠 in

cluster𝐶𝑙 by taking the minimum ratio across all pairs of groups. In

otherwords, the balance of𝐶𝑙 is determined by the largest difference

in the proportional representation of each group 𝑉𝑠 in cluster 𝐶𝑙 ,

i.e., the largest difference between |𝑉𝑠 ∩𝐶𝑙 | and |𝑉𝑠′ ∩𝐶𝑙 | among

all pairs of groups. A cluster achieves perfect balance (value 1) only

if all groups are equally represented in the cluster, while a lower

balance value indicates that at least one group pair is unbalanced.

The average balance is then obtained by taking the average of the

balance values over all 𝑘 clusters.

Hardware and software configuration. For hardware, all experi-
ments are conducted on a Linux server equipped with an Intel Xeon

Gold 5218R CPU, 95GB RAM, and an NVIDIA Quadro RTX 8000

48GB GPU. For software, we use Python 3.12, SciPy v1.11, CuPy

v13.2, and CUDA 12.3. Each experiment is repeated ten times, and

the average results are reported for performance evaluation.

4.2 Experiment Results
Synthetic dataset. We first consider the mSBM dataset to demon-

strate the effectiveness and scalability of FairAD in comparison

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Minh Phu Vuong, Young-Ju Lee, Iván Ojeda-Ruiz, and Chul-Ho Lee

SC FairSC sFairSC FairAD

0.5 1.0 1.5 2.0 2.5 3.0
of nodes n 1e4

0.0

0.5

1.0

Er
ro

r
ra

te

(a) ℎ = 2, 𝑘 = 4

0.5 1.0 1.5 2.0 2.5 3.0
of nodes n 1e4

0.0

0.5

1.0

Er
ro

r
ra

te

(b) ℎ = 5, 𝑘 = 5

0.5 1.0 1.5 2.0 2.5 3.0
of nodes n 1e4

0.0

0.5

1.0

Er
ro

r
ra

te

(c) ℎ = 10, 𝑘 = 5

0.5 1.0 1.5 2.0 2.5 3.0
of nodes n 1e4

0

2000

4000

Ru
nn

in
g

Ti
m

e
(s

)

(d) ℎ = 2, 𝑘 = 4

0.5 1.0 1.5 2.0 2.5 3.0
of nodes n 1e4

0

2000

4000

Ru
nn

in
g

Ti
m

e
(s

)

(e) ℎ = 5, 𝑘 = 5

0.5 1.0 1.5 2.0 2.5 3.0
of nodes n 1e4

0

2000

4000

Ru
nn

in
g

Ti
m

e
(s

)

(f) ℎ = 10, 𝑘 = 5

Figure 4: Error rate in (23), shown in the top row, and running time (in seconds), shown in the bottom row, under synthetic
networks generated by mSBM with varying values of ℎ and 𝑘 .

Table 2: Running times (in seconds) of SC, FairSC, sFairSC, and FairAD on mSBM with 𝑛 = 20000

𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6

ℎ = 2 ℎ = 4 ℎ = 6 ℎ = 8 ℎ = 10 ℎ = 2 ℎ = 4 ℎ = 6 ℎ = 8 ℎ = 10 ℎ = 2 ℎ = 4 ℎ = 6 ℎ = 8 ℎ = 10 ℎ = 2 ℎ = 4 ℎ = 6 ℎ = 8 ℎ = 10

SC 44 34 55 53 53 32 22 26 46 47 53 35 46 55 58 79 58 44 39 53

FairSC 1337 1215 1249 1329 1357 1304 1325 1361 1213 1196 1137 1253 1143 1156 1243 1248 1313 1337 1189 1179

sFairSC 546 512 535 636 457 444 499 466 450 526 578 534 698 437 567 642 603 654 433 603

FairAD 57 52 51 52 52 61 60 56 58 55 65 63 64 62 63 81 66 69 63 71

Table 3: Running times (in seconds) of SC, FairSC, sFairSC, and FairAD on mSBM with 𝑛 = 30000

𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6

ℎ = 2 ℎ = 4 ℎ = 6 ℎ = 8 ℎ = 10 ℎ = 2 ℎ = 4 ℎ = 6 ℎ = 8 ℎ = 10 ℎ = 2 ℎ = 4 ℎ = 6 ℎ = 8 ℎ = 10 ℎ = 2 ℎ = 4 ℎ = 6 ℎ = 8 ℎ = 10

SC 73 78 86 111 97 111 72 84 111 87 89 89 78 107 122 82 82 94 107 122

FairSC 4502 4287 4383 4285 4472 4574 4523 4567 4502 4421 4439 4553 4494 4529 4519 4510 4332 4453 4339 4379

sFairSC 1008 1036 1003 963 1001 1032 1006 1007 962 1044 1099 1157 1063 1076 981 890 862 804 883 789

FairAD 122 116 114 112 114 149 129 133 132 140 140 149 134 130 131 161 149 146 148 158

with the baseline algorithms in terms of error rate and running

time. As illustrative results, in Figure 4, we present the results for

the cases with ℎ = 2 and 𝑘 = 4, ℎ = 5 and 𝑘 = 5, and ℎ = 10 and

𝑘 = 5. Here, the graph sizes vary from 𝑛 = 5 × 103 to 𝑛 = 3 × 104.
As shown in Figure 4, we observe that FairSC, sFairSC, and FairAD

accurately obtain the ground truth clustering labels, whereas SC

fails with a high error rate. While FairSC, sFairSC, and FairAD do

the job correctly, FairAD is significantly faster than FairSC and

sFairSC in terms of running time, with the speed-ups of up to 42×
and 12×, respectively.

We further evaluate the impact of varying values of ℎ and 𝑘 on

the performance of FairAD and baselines when the graph sizes are

𝑛 = 20000 and 𝑛 = 30000. We observe that the error rates of FairSC,

sFairSC, and FairAD are all zero for most cases, whereas SC’s error

rate ranges from 0.17 to 0.83. We omit the results for brevity. We

here mainly evaluate the running time of each method. As shown

in Tables 2 and 3, the running time of FairAD is just under 200

seconds, achieving over 10× speed-up compared to sFairSC and

30× to 40× speed-up compared to FairSC for all test cases. While SC

achieves the similar running time as FairAD, it has a much higher

error rate. These results demonstrate the superior performance of

FairAD across different settings.

Real-world datasets.We next evaluate the effectiveness and ef-

ficiency of FairAD on six real-world datasets in terms of the av-

erage balance and running time and demonstrate its superiority

to the baselines. As shown in Figure 5, we observe that FairAD

outperforms all baselines consistently in terms of average balance.

Specifically, for the small graphs such as NBA, German, and LastFM,

FairAD achieves an average improvement of approximately 20%,

with up to about 100% improvement, when compared to FairSC

and sFairSC. Note that FairSC and sFairSC exhibit nearly identical

balance performance for all graphs. We also observe that FairSC

takes an excessive amount of time, i.e., several hours to days, for

the larger graphs such as Recidivism, Deezer, and Credit, for which

we do not report its results. For the larger graphs, FairAD outper-

forms sFairSC by 10% to 15%. Overall, the results demonstrate the

effectiveness of FairAD, which consistently achieves the highest

average-balance score for all test cases on all datasets. In other

words, FairAD produces the most balanced clusters for all cases.

To evaluate the efficiency of FairAD, we compare its running time

with that of each baseline and report the results in Figure 6. FairAD

is at least twice as fast as sFairSC and more than 3× faster than

FairSC for all values of 𝑘 on the small graphs such as NBA, German,

and LastFM. The performance gap in running time becomes wider

FairAD: Computationally Efficient Fair Graph Clustering via Algebraic Distance CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

SC FairSC sFairSC FairAD

2 4 6 8
of clusters: k

0.2

0.3

0.4

0.5

Av
er

ag
e

Ba
la

nc
e

(a) NBA

2 4 6 8
of clusters: k

0.2

0.4

0.6

Av
er

ag
e

Ba
la

nc
e

(b) German

2 4 6 8
of clusters: k

0.0

0.1

0.2

Av
er

ag
e

Ba
la

nc
e

(c) LastFM

2 4 6 8
of clusters: k

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

Ba
la

nc
e

(d) Recidivism

2 4 6 8
of clusters: k

0.5

0.6

0.7

0.8

Av
er

ag
e

Ba
la

nc
e

(e) Deezer

2 4 6 8
of clusters: k

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

Ba
la

nc
e

(f) Credit

Figure 5: Average balance for NBA, German, and LastFM datasets (top row) and for Recidivism, Deezer, and Credit datasets
(bottom row), when changing the number of clusters.

SC FairSC sFairSC FairAD

2 4 6 8
of clusters: k

0

1

2

Ru
nn

in
g

Ti
m

e
(s

)

(a) NBA

2 4 6 8
of clusters: k

0

5

10

15

Ru
nn

in
g

Ti
m

e
(s

)

(b) German

2 4 6 8
of clusters: k

0

10

20

30

Ru
nn

in
g

Ti
m

e
(s

)
(c) LastFM

2 4 6 8
of clusters: k

0

250

500

750

Ru
nn

in
g

Ti
m

e
(s

)

(d) Recidivism

2 4 6 8
of clusters: k

0

2000

4000

Ru
nn

in
g

Ti
m

e
(s

)

(e) Deezer

2 4 6 8
of clusters: k

0

2000

4000

6000

Ru
nn

in
g

Ti
m

e
(s

)

(f) Credit

Figure 6: Running time for NBA, German, and LastFM datasets (top row) and for Recidivism, Deezer, and Credit datasets (bottom
row), when changing the number of clusters.

on the larger graphs, as shown in Figures 6(d)–6(f). FairAD is more

than an order of magnitude faster than sFairSC, achieving up to 40×
speed-up compared to sFairSC. This is because sFairSC, especially

its eigensolver, requires a much larger number of iterations to

converge for such large graphs. We also observe that FairAD is even

faster than SC for Deezer and Credit datasets, where SC already

fails to produce balanced clusters.

To summarize, the experiments on both synthetic and real-world

datasets confirm the effectiveness and efficiency of FairAD. It pro-

duces highly balanced clusters while taking only a fraction of the

running times of its competingmethods, namely FairSC and sFairSC,

making it a practical solution for fair graph clustering.

5 Conclusion
We have introduced FairAD, a novel fair graph clustering method

via algebraic distance. The main enabler of FairAD is its frame-

work to impose fairness constraints into the affinity matrix when

it is constructed based on the algebraic distance. FairAD then ef-

fectively leveraged graph coarsening to convert the optimization

problem into a simpler graph cut problem, which is solved effi-

ciently. Its implementation was further optimized through several

techniques. Experiment results demonstrated the superior perfor-

mance of FairAD to state-of-the-art fair graph clustering algorithms

in terms of both the quality of fairness and computational efficiency.

Acknowledgments
This work was supported by the National Science Foundation under

grants IIS-2209921, CNS-2209922, and DMS-2208499, the Interna-

tional Energy Joint R&D Program of the Korea Institute of Energy

Technology Evaluation and Planning (KETEP), granted financial

resource from the Ministry of Trade, Industry & Energy, Republic

of Korea (No. 20228530050030), and an equipment donation from

NVIDIA Corporation. C. Lee is the corresponding author.

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Minh Phu Vuong, Young-Ju Lee, Iván Ojeda-Ruiz, and Chul-Ho Lee

GenAI Usage Disclosure
No GenAI tools were used in any stage of the research, nor in the

writing.

References
[1] Matteo Almanza, Alessandro Epasto, Alessandro Panconesi, and Giuseppe Re.

2022. k-Clustering with fair outliers. In Proceedings of the Fifteenth ACM Interna-
tional Conference on Web Search and Data Mining. 5–15.

[2] Daichi Amagata. 2024. Fair k-center clustering with outliers. In Proceedings of
The 27th International Conference on Artificial Intelligence and Statistics. PMLR,

10–18.

[3] Arthur Asuncion, David Newman, et al. 2007. UCI machine learning repository.

[4] Arturs Backurs, Piotr Indyk, Krzysztof Onak, Baruch Schieber, Ali Vakilian, and

Tal Wagner. 2019. Scalable fair clustering. In Proceedings of the 36th International
Conference on Machine Learning. PMLR, 405–413.

[5] Nathan Bell, Luke N. Olson, Jacob Schroder, and Ben Southworth. 2023. PyAMG:

Algebraic Multigrid Solvers in Python. Journal of Open Source Software 8, 87
(2023), 5495.

[6] Brian Brubach, Darshan Chakrabarti, John P. Dickerson, Aravind Srinivasan,

and Leonidas Tsepenekas. 2021. Fairness, semi-supervised learning, and more:

A general framework for clustering with stochastic pairwise constraints. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 6822–6830.
[7] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. 2017.

Fair clustering through fairlets. In Proceedings of the 31st International Conference
on Neural Information Processing Systems. 5036–5044.

[8] Mihai Cucuringu, Ioannis Koutis, Sanjay Chawla, Gary Miller, and Richard Peng.

2016. Simple and scalable constrained clustering: a generalized spectral method.

In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics. PMLR, 445–454.

[9] Enyan Dai and Suhang Wang. 2021. Say no to the discrimination: Learning fair

graph neural networks with limited sensitive attribute information. In Proceedings
of the 14th ACM International Conference on Web Search and Data Mining. 680–
688.

[10] Yushun Dong, Ninghao Liu, Brian Jalaian, and Jundong Li. 2022. Edits: Modeling

and mitigating data bias for graph neural networks. In Proceedings of the ACM
Web Conference 2022. 1259–1269.

[11] Xin Du, Yulong Pei, Wouter Duivesteijn, and Mykola Pechenizkiy. 2020. Fairness

in network representation by latent structural heterogeneity in observational

data. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
3809–3816.

[12] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard

Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference. 214–226.

[13] Wei Fan, Kunpeng Liu, Rui Xie, Hao Liu, Hui Xiong, and Yanjie Fu. 2021. Fair

Graph Auto-Encoder for Unbiased Graph Representations with Wasserstein

Distance. In 2021 IEEE International Conference on Data Mining (ICDM). 1054–
1059.

[14] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and

Suresh Venkatasubramanian. 2015. Certifying and removing disparate impact.

In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 259–268.

[15] Michel Fortin and Roland Glowinski. 2000. Augmented Lagrangian methods:
Applications to the numerical solution of boundary-value problems. Elsevier.

[16] Kareem L Jordan and Tina L Freiburger. 2015. The effect of race/ethnicity on

sentencing: Examining sentence type, jail length, and prison length. Journal of
Ethnicity in Criminal Justice 13, 3 (2015), 179–196.

[17] Christopher Jung, Sampath Kannan, andNeil Lutz. 2020. Service in Your Neighbor-

hood: Fairness in Center Location. In 1st Symposium on Foundations of Responsible
Computing, Vol. 156. 5:1–5:15.

[18] Matthäus Kleindessner, Samira Samadi, Pranjal Awasthi, and Jamie Morgenstern.

2019. Guarantees for spectral clustering with fairness constraints. In Proceedings

of the 36th International Conference on Machine Learning. PMLR, 3458–3467.

[19] Matt Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfactual

fairness. In Proceedings of the 31st International Conference on Neural Information
Processing Systems. Curran Associates Inc., 4069–4079.

[20] Mariá C.V. Nascimento and André C.P.L.F. de Carvalho. 2011. Spectral methods

for graph clustering–a survey. European Journal of Operational Research 211, 2

(2011), 221–231.

[21] Iván Ojeda-Ruiz and Young-Ju Lee. 2020. A fast constrained image segmentation

algorithm. Results in Applied Mathematics 8 (2020), 100103.
[22] Dorit Ron, Ilya Safro, and Achi Brandt. 2011. Relaxation-based coarsening and

multiscale graph organization. Multiscale Modeling & Simulation 9, 1 (2011),

407–423.

[23] Benedek Rozemberczki and Rik Sarkar. 2020. Characteristic Functions on Graphs:

Birds of a Feather, from Statistical Descriptors to Parametric Models. In Proceed-
ings of the 29th ACM International Conference on Information and Knowledge
Management. 1325–1334.

[24] Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.

[25] Eitan Sharon, Meirav Galun, Dahlia Sharon, Ronen Basri, and Achi Brandt. 2006.

Hierarchy and adaptivity in segmenting visual scenes. Nature 442, 7104 (2006),
810–813.

[26] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.

IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8 (2000), 888–
905.

[27] Ali Vakilian and Mustafa Yalciner. 2022. Improved approximation algorithms for

individually fair clustering. In Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics. PMLR, 8758–8779.

[28] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and
Computing 17 (2007), 395–416.

[29] Dorothea Wagner and Frank Wagner. 1993. Between min cut and graph bisection.

In Proceedings of the 18th International Symposium on Mathematical Foundations
of Computer Science. Springer, 744–750.

[30] Ji Wang, Ding Lu, Ian Davidson, and Zhaojun Bai. 2023. Scalable spectral clus-

tering with group fairness constraints. In Proceedings of the 26th International
Conference on Artificial Intelligence and Statistics. PMLR, 6613–6629.

[31] Nan Wang, Lu Lin, Jundong Li, and Hongning Wang. 2022. Unbiased graph

embedding with biased graph observations. In Proceedings of the ACM Web
Conference 2022. 1423–1433.

[32] Xiang Wang, Buyue Qian, and Ian Davidson. 2014. On constrained spectral

clustering and its applications. Data Mining and Knowledge Discovery 28 (2014),

1–30.

[33] M.A. Woodbury. 1950. Inverting Modified Matrices. Department of Statistics,

Princeton University.

[34] Ruicheng Xian, Lang Yin, and Han Zhao. 2023. Fair and optimal classification via

post-processing. In Proceedings of the 40th International Conference on Machine
Learning. PMLR, 37977–38012.

[35] Linli Xu, Wenye Li, and Dale Schuurmans. 2009. Fast normalized cut with linear

constraints. In 2009 IEEE Conference on Computer Vision and Pattern Recognition.
2866–2873.

[36] I-Cheng Yeh and Che-hui Lien. 2009. The comparisons of data mining techniques

for the predictive accuracy of probability of default of credit card clients. Expert
Systems with Applications 36, 2 (2009), 2473–2480.

[37] Stella X Yu and Jianbo Shi. 2001. Grouping with bias. Advances in Neural
Information Processing Systems 14 (2001), 1327–1334.

[38] Stella X Yu and Jianbo Shi. 2004. Segmentation given partial grouping constraints.

IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 2 (2004), 173–
183.

[39] Fengda Zhang, Kun Kuang, Long Chen, Yuxuan Liu, Chao Wu, and Jun Xiao.

2022. Fairness-aware contrastive learning with partially annotated sensitive

attributes. In The Eleventh International Conference on Learning Representations.
[40] Tao Zhang, Tianqing Zhu, Jing Li, Mengde Han, Wanlei Zhou, and Philip S.

Yu. 2020. Fairness in semi-supervised learning: Unlabeled data help to reduce

discrimination. IEEE Transactions on Knowledge and Data Engineering 34, 4 (2020),
1763–1774.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Spectral Clustering
	2.2 Fairness Constraints

	3 Proposed Method: FairAD
	3.1 Imposing Fairness Constraints
	3.2 Fair Graph Clustering via Algebraic Distance
	3.3 Optimized Implementation

	4 Experiments
	4.1 Experiment Setup
	4.2 Experiment Results

	5 Conclusion
	Acknowledgments
	References

